Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Ali Farahmand
Senior CS Capstone
Commits
88d36ccf
Commit
88d36ccf
authored
Mar 22, 2021
by
AF3
Browse files
added the basic CNN training code
parent
bbcec365
Changes
2
Show whitespace changes
Inline
Side-by-side
basicCNN.py
0 → 100644
View file @
88d36ccf
### Ali Farahmand
### CS 488 Senior Capstone
#imports
import
glob
import
numpy
as
np
import
pandas
as
pd
from
keras.preprocessing.image
import
ImageDataGenerator
from
keras.layers
import
Conv2D
,
MaxPooling2D
,
Flatten
,
Dense
,
Dropout
from
keras.models
import
Sequential
from
keras
import
optimizers
from
tensorflow.keras.callbacks
import
ReduceLROnPlateau
,
ModelCheckpoint
import
matplotlib
import
matplotlib.pyplot
as
plt
import
matplotlib.image
as
mpimg
#commonly used variables
batch_size
=
10
image_size
=
(
96
,
96
)
epochs
=
10
#loading csv into dataframe
labels
=
pd
.
read_csv
(
"histopathologic-cancer-detection/train_labels.csv"
)
#Creating the training and valiation sets
labels_neg
=
labels
[
labels
[
'label'
]
==
0
].
sample
(
80000
,
random_state
=
3
)
labels_pos
=
labels
[
labels
[
'label'
]
==
1
].
sample
(
80000
,
random_state
=
3
)
val_neg
=
labels_neg
[:
8000
]
val_pos
=
labels_pos
[:
8000
]
labels_neg
=
pd
.
concat
([
labels_neg
,
val_neg
]).
drop_duplicates
(
keep
=
False
)
labels_pos
=
pd
.
concat
([
labels_pos
,
val_pos
]).
drop_duplicates
(
keep
=
False
)
train_labels
=
pd
.
concat
([
labels_neg
,
labels_pos
])
val_labels
=
pd
.
concat
([
val_neg
,
val_pos
])
#adding image format .tif to the end of each id
def
append_ext
(
fn
):
return
fn
+
".tif"
train_labels
[
"id"
]
=
train_labels
[
"id"
].
apply
(
append_ext
)
val_labels
[
"id"
]
=
val_labels
[
"id"
].
apply
(
append_ext
)
#datagenerators and image augmentation
train_datagen
=
ImageDataGenerator
(
rescale
=
1.
/
255
,
zoom_range
=
0.3
,
rotation_range
=
50
,
width_shift_range
=
0.2
,
height_shift_range
=
0.2
,
shear_range
=
0.2
,
horizontal_flip
=
True
,
fill_mode
=
'nearest'
)
val_datagen
=
ImageDataGenerator
(
rescale
=
1.
/
255
)
train_generator
=
train_datagen
.
flow_from_dataframe
(
dataframe
=
train_labels
,
directory
=
"histopathologic-cancer-detection/train"
,
x_col
=
"id"
,
y_col
=
"label"
,
class_mode
=
"raw"
,
target_size
=
image_size
,
batch_size
=
batch_size
)
val_generator
=
val_datagen
.
flow_from_dataframe
(
dataframe
=
val_labels
,
directory
=
"histopathologic-cancer-detection/train"
,
x_col
=
"id"
,
y_col
=
"label"
,
class_mode
=
"raw"
,
target_size
=
image_size
,
batch_size
=
batch_size
)
#Creating the model
model
=
Sequential
()
model
.
add
(
Conv2D
(
32
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
,
input_shape
=
(
96
,
96
,
3
)))
model
.
add
(
Conv2D
(
32
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
Conv2D
(
32
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.3
))
model
.
add
(
Conv2D
(
64
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
Conv2D
(
64
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
Conv2D
(
64
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.3
))
model
.
add
(
Conv2D
(
128
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
Conv2D
(
128
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
Conv2D
(
128
,
kernel_size
=
(
3
,
3
),
activation
=
'relu'
))
model
.
add
(
MaxPooling2D
(
pool_size
=
(
2
,
2
)))
model
.
add
(
Dropout
(
0.3
))
model
.
add
(
Flatten
())
model
.
add
(
Dense
(
256
,
activation
=
"relu"
))
model
.
add
(
Dropout
(
0.3
))
model
.
add
(
Dense
(
1
,
activation
=
"sigmoid"
))
model
.
compile
(
loss
=
'binary_crossentropy'
,
optimizer
=
optimizers
.
Adam
(
lr
=
1e-4
),
metrics
=
[
'accuracy'
])
model
.
summary
()
#saving the model at best val accuracy
filepath
=
"model.h5"
checkpoint
=
ModelCheckpoint
(
filepath
,
monitor
=
'val_accuracy'
,
verbose
=
1
,
save_best_only
=
True
,
mode
=
'max'
)
#reducing the learning rate if val accuracy drops
reduce_lr
=
ReduceLROnPlateau
(
monitor
=
'val_accuracy'
,
factor
=
0.5
,
patience
=
2
,
verbose
=
1
,
mode
=
'max'
,
min_lr
=
0.00001
)
callbacks_list
=
[
checkpoint
,
reduce_lr
]
#training
history
=
model
.
fit
(
train_generator
,
batch_size
=
batch_size
,
validation_data
=
val_generator
,
validation_steps
=
50
,
epochs
=
epochs
,
verbose
=
1
,
callbacks
=
callbacks_list
)
#saving the accuracy and loss values
f
,
(
ax1
,
ax2
)
=
plt
.
subplots
(
1
,
2
,
figsize
=
(
12
,
4
))
t
=
f
.
suptitle
(
'Basic CNN Performance'
,
fontsize
=
12
)
f
.
subplots_adjust
(
top
=
0.85
,
wspace
=
0.3
)
epoch_list
=
list
(
range
(
1
,
epochs
+
1
))
ax1
.
plot
(
epoch_list
,
history
.
history
[
'accuracy'
],
label
=
'Train Accuracy'
)
ax1
.
plot
(
epoch_list
,
history
.
history
[
'val_accuracy'
],
label
=
'Validation Accuracy'
)
ax1
.
set_xticks
(
np
.
arange
(
0
,
epochs
+
1
,
5
))
ax1
.
set_ylabel
(
'Accuracy Value'
)
ax1
.
set_xlabel
(
'Epoch'
)
ax1
.
set_title
(
'Accuracy'
)
l1
=
ax1
.
legend
(
loc
=
"best"
)
ax2
.
plot
(
epoch_list
,
history
.
history
[
'loss'
],
label
=
'Train Loss'
)
ax2
.
plot
(
epoch_list
,
history
.
history
[
'val_loss'
],
label
=
'Validation Loss'
)
ax2
.
set_xticks
(
np
.
arange
(
0
,
epochs
+
1
,
5
))
ax2
.
set_ylabel
(
'Loss Value'
)
ax2
.
set_xlabel
(
'Epoch'
)
ax2
.
set_title
(
'Loss'
)
l2
=
ax2
.
legend
(
loc
=
"best"
)
plt
.
savefig
(
'plotmain.png'
)
main.py
deleted
100644 → 0
View file @
bbcec365
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment